
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3224

Implementation of Mapping Heuristic

Genetic Algorithm

Amanpreet Kaur
1
, Prabhjot Kaur

2

M. Tech Research Scholar, Department of Computer Science, Guru Nanak Dev University, Amritsar, India
1

M. Tech Research Scholar, Department of Computer Science, Guru Nanak Dev University, Amritsar, India
2

Abstract- Mapping Heuristic APN Algorithm in which the list is ordered according to node priorities with the highest

priority node. Schedule node to the processors which gives highest node. Calculate start time of node, routing table

maintained for each processor, each entry of table indexed by destination processing element. Routing table will direct

message from one machine to along a path with minimum communication time. Shortest path with between the

processing elements are stored in routing table. Message is sent, the route from source to destination machine become

busy, carrying message of certain amount of time. When message is received its route become free and this route can

be used for other processor for transmission of message again. Every time a message sent and message received event

is processed the routing table will be updated to profile the direction for fastest communication routes at any time.

Append all ready successor nodes of ni according to priority to the ready node list.

Keywords: DAG, multiprocessor scheduling, genetic algorithm heuristics, mapping heuristics

I. INTRODUCTION

Parallelization of an application involves the

decomposition of the program into several sub tasks,

analyzing the dependencies between the sub tasks and

scheduling the sub tasks [1]. The assignment of tasks to

the processing units and defining their execution order

statically is referred to as task scheduling. Task scheduling

is a NP- complete problem. Task scheduling is crucial to

the performance of the application. Hence we have to find

suitable heuristic technique to find “optimal” solutions.

Heuristics try to find near optimal solution. For these

heuristics, the program is modelled as a directed acyclic,

graph, called task graph, where the nodes represent the

tasks of the program and the edges are the communication.

There are some assumptions for parallel system:

(1) Processor can communicate with each other through a

dedicated identical communication link. (2) The task

requires only one processor at a time. (3) Communication

can be performed at the same time. Objective of

scheduling is to map tasks onto machines and order their

execution so that task precedence requirements are

satisfied and there is a minimum makespan, schedule

length ratio and processor utilization.

One of the best heuristic methods is Genetic Algorithm

(GA). There are many researches under the topics of

solving the static task scheduling using GAs in the

multiprocessor systems and the distributed systems. In this

paper, a novel GA is presented which has a good ability to

solve the above problem using the Mapping Heuristic

Approach.

II. SCHEDULING PROBLEM

Directed Acyclic Graph model is assumed for task graph.

The system consists of a number of identical processors

which could be limited or unlimited. DAG is a generic

model of a parallel program consisting of a set of

processors among which there are dependencies [4], [5].

Each process is an indivisible unit of execution it

generates its output. A node has one or more input or has a

one or more output to various nodes. When all input are

available, the node is triggered to execute. After its

execution it generates its output. A set of node

{𝑛1,𝑛2,𝑛3 ……𝑛𝑛} are connected by a set of connected

edge which are represented by (𝑛𝑖 ,𝑛𝑗) where 𝑛𝑖 is called

the Parent node and nj is called the child node. A node

without parent is called an Entry node and a node without

child called an Exit node. The weight of a node, denoted

by w (ni), represents the process execution time of a

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3225

process. Since each edge corresponds to a message

transfer from one process to another, the weight of an

edge, denoted by c (ni, nj) is equal to the message

transmission time from node ni to nj . Thus c (ni, nj)

becomes zero when ni and nj are scheduled to the same

processor because intraprocessor communication time is

negligible compared with the interprocessor

communication time. The node and edge weights are

usually obtained by estimations.

Basic techniques in dag scheduling: The two main

attributes priorities are the t-level and b-level.

t- level: The t-level of a node 𝑛𝑖 is the length of the

longest path from an entry node to 𝑛𝑖 . Here, the length of

a path is the sum of all node and edge weights along the

path. The t-level of 𝑛𝑖 highly correlates with 𝑛𝑖 earliest

start time, denoted by 𝑇𝑠 (𝑛𝑖), which is determined after 𝑛𝑖

is scheduled to a processor.

b- level: The b-level of a node is bounded by the length of

the critical path. A Critical Path (CP) of a DAG, is the

longest path from entry node to an exist node.

III. SCHEDULING ALGORITHM:

 Unbounded Number of Clusters (UNC): These

algorithms schedule the DAG to an unbounded number of

clusters. The processors are assumed to be fully-

connected. The technique employed by these algorithms is

also called clustering.

 Bounded Number of Processors (BNP): These

algorithms schedule the DAG to a bounded number of

processors directly. The processors are assumed to be

fully-connected. Most BNP scheduling algorithms are

based on the list scheduling technique.

 Task Duplication Based (TDB):

In duplication-based scheduling, different strategies can be

employed to select ancestor nodes for duplication. Some

of the algorithms duplicate only the direct predecessors

whereas some other algorithms try to duplicate all possible

ancestors.

 Arbitrary Processor Network (APN): These

algorithms perform scheduling and mapping on the target

architectures in which the processors are connected via a

network of arbitrary topology. The algorithms in this class

take into account specific architectural features such as the

number of processors as well as their interconnection

topology.

IV. MAPPING HEURISTIC ALGORITHM

The MH (Mapping Heuristic) Algorithm is described

below:

i. Compute the level of each node ni in the task

graph.

ii. Initialize a ready node list by inserting all entry

nodes in the task graph. The list is ordered according to

node priorities, with the highest priority node first.

iii. while ready node list is not empty do

iv. ni the first node in the list

v. Schedule ni to the processor which gives the

smallest start time.

vi. Append all ready successor nodes of ni,

according to their priorities, to the ready node list.

vii. end while

The MH algorithm first assigns priorities by computing

the levels of all nodes. A ready node list is then initialized

to contain all entry nodes ordered by putting the highest

priority node first. In the while loop, the first node ni in the

ready node list is scheduled to a processor that gives the

smallest start time. In calculating the start time of node, a

routing table is maintained for each processor. The table

contains the information as to which path to route

messages from the parent nodes to the node under

consideration. The start time of ni is then taken to be the

larger of the message arrival time and the ready time of the

processor which is defined as the finish time of the last

scheduled node. After ni is scheduled, all the ready

successor nodes of ni are appended to the ready node list.

V. GENETIC ALGORITHM

GAs are inspired by Darwin’s theory about evolution- the

survival of the fittest. They were proposed and developed

in the 1960s by John Holland, his students and his

colleagues at the University of Michigan. Genetic

Algorithms are search algorithms that are based on

concepts of natural selection and natural genetics. Genetic

algorithm was developed to simulate some of the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3226

processes observed in natural evolution, a process that

operates on chromosomes. The genetic algorithm differs

from other search methods in that it searches among a

population of points, and works with a coding of

parameter set, rather than the parameter values themselves.

It also uses objective function information without any

gradient information.

Algorithmically, the basic genetic algorithm (GAs) is

outlined as below:

STEP I [Start] Generate random population of

chromosomes, that is, suitable solutions for the problem.

STEP II [Fitness] Evaluate the fitness of each

chromosome in the population.

STEP III [New Population] Create a new population by

repeating following steps until new population is

complete:

i. [Selection] Select two parent chromosomes from a

population according to their fitness. Better the fitness, the

bigger chance to be selected to be the parent.

ii. [Crossover] With a crossover probability, cross over

the parents to form new offspring, that is, children. If no

crossover was performed, offspring is the exact copy of

parents.

iii. [Mutation] With a mutation probability, mutate new

offspring at each locus.

iv. [Accepting] Place new offspring in the new

population.

STEP IV [Replace] Use new generated population for a

further run of the algorithm.

STEP V [Test] If the end condition is satisfied, stop, and

return the best solution in current population.

STEP VI [Loop] Go to step 2.

The genetic algorithms performance is largely influenced

by crossover and mutation operators.

VI. PROPOSED ALGORITHM

The actual number of generation needed depends upon the

number of task and population size. Fewer the number of

task and the larger the population size, the fewer the

number of generation required for convergent solution.

Crossover & Mutation: Crossover the first genetic

operation performs on the genomes. Crossover examines

the current solution in order to find better ones. The

crossover between two dominant parents chosen by the

selection gives higher probability of producing offspring

having traits. All population are randomly paired for

crossover. Crossover site or location where crossover

paired. where the value is small for all nodes than the

value of for all nodes after the site. A valid site must be

one task before and after the site. Otherwise, either none

or all tasks would be swapped and the resultant genome

would be different. Following crossover operator mutation

is performed:

Randomly select task swapped with another randomly

selected task both within the same genome. After breeding

a new generation of scheduling the fitness of each genome

in the population is computed by calling fitness. Finish

Time of genome first computed and store array. Task

Precedence between processor must be enforced to

consider the time complete all of the tasks scheduled in

genome. Finish time for all genomes in population are

known the fitness of genome is calculated.

Fitness function: The fitness function interprets the

chromosome in term of physical representation. The

fitness function must measure the quality of the

chromosome in the population. Main objective to

minimize the finishing time of schedule, the fitness value

of the schedule will be maximum finishing time observed

in a population, minus the finsh time of schedule.

Fitval [] = (maximum finish time in population – Finish

time schedule)/ maximum finish time.

The fitness function of GA is generally the objective

function that requires to be optimized. The fitness function

has a higher value when the fitness of the chromosome is

better than others. The fitness function introduces a

criterion for selection of chromosomes.

Selection: This selection operator is intended to improve

the average quality of the population by giving the high

quality chromosome a better chance to get copied into the

next generation. Selection pressure characterizes the

selection schemes. It is defined as the ratio of the

probability of selection of the best chromosome in the

population to that of an average chromosome. In this

Roulette wheel selection is used. Roulette wheel Selection

is known as Fitness Proportionate selection. In roulette

wheel individuals are selected with a probability that is

directly proportion to their fitness value. The probabilities

of selecting a parent can be seen as spinning a roulette

wheel the size of the segment for each parent being

proportional to its fitness. Those with the largest fitness

have more probability of being chosen.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3227

Reproduce: creates a new population of genomes by

selection from the current population using weighted

random number based on the fitness values. Thus genomes

with higher fitness value is have a better chance of serving

to next generation.

ALGORITHM

1. Initialize ready node list by inserting all entry

node in the task graph. The list is ordered according to

node priorities with thw highest priority node.

2. While ready node list is not empty do

3. ni first node in the list.

4. Call Generate Schedule

5. Repeat step 6 to 9 generations number of times.

6. Call reproduce

7. Call crossover

8. Call mutation

9. Compute the fitness value of each chromosome

store fitness value.

10. Compute fitness value. Store result in fitness

value select chromosome with best fitness.

11. Append all ready successor node of ni. According

to priority to the ready node list.

12. End while.

GENERATE SCHEDULE

1. Schedule ni to the processors which gives highest

node.

2. Calculate start time of node, Routing table

maintain for each processor.

3. Each entry of table indexed by destination

processing element.

4. Routing table will direct message from one

machine to along a path with minimum communication

time.

5. Shortest path with between the processing

elements are stored in routing table.

6. Message is sent, the route from source to

destination machine become busy, carrying message of

certain amount of time.

7. When message is received its route become free

and this route can be used for other processor for

transmission of message again.

8. Every time a message sent and message received

event is processed the routing table will be updated to

profile the direction for fastest communication routes at

any time.

CROSSOVER:

1. Perform the crossover operation of two

chromosome pair A and B.

2. C1: Select crossover Generate a random number

crossover between 0 and the maximum node of task graph.

3. C2: Do C3 for each processor Pi in chromosome

A and B.

4. C3: Find node ni in the processor Pi that has

Highest priority node and nj is the node following ni,

where c = ni < nj highest for i.

5. C4: Do C5 for each processor Pi in chromosome

A and B.

6. C5: Using the crossover site selected in C3

exchange the part of chromosome A and B.

MUTATION:

1. Mutate a chromosome to form new chromosome.

2. M1: Randomly Pick Node ni.

3. M2: Randomly Pick Node nj Form a new

chromosome by exchange the two nodes ni and nj in the

chromosome.

 REPRODUCE:

1. Population of chromosome Pop and generate new

population NEWPOP.

2. R1: Construct roulette wheel: Let Fitness sum be

the sum of all the fitness value of chromosome in POP.

Form fitness_ sum slot and assign chromosome to occupy

number of slots according to their fitness value of the

chromosome.

3. R2: Select the first chromosome in POP with

highest fitness value. Add this chromosome to NEWPOP.

4. R3: Let NEWPOP be the number of chromosome

in POP. Repeat R4 NEWPOP -1 time.

5. R4: Generate Random number between 1 and

fitness_sum. Use it to index b into the slots to find the

corresponding chromosome. Add the chromosome to

NEWPOP.

VII. EXPERIMENTAL RESULT

Makespan time graph

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3228

Makespan is defined as the completion time of the

algorithm. Lesser the makespan less time to execute the

algorithm more efficient is the algorithm. Makespan is

calculated by measuring the finishing time of the exit task

by the algorithm. As Graph shows at node 40 makespan

per generation is 2275 then as nodes increases means

highest node 80 nodes. in list then its makespan time

decreases to 1348.

Processor utilization graph

Processor utilization is the most important aspect of

determining the performance of algorithm. At 40 nodes

having processor utilization approx 31 % but as nodes

increases to 80 processor utilization decreases because

with increasing nodes there are more work has to done by

single processors so processors utilization is decreases

approx 22%.

Schedule length ratio

Schedule length ratio is defined as the ratio DAG. The

lesser the values of SLR the more efficient is the

algorithm, but the SLR cannot be less than the Critical

Path values.

Scheduled Length Ratio = Makespan / Critical path

Due to this effect as per number of node are increases its

SLR ratio should be decreases and above graph shown

same as explained if node is 40 then it has higher SLR

4.74 and as nodes increase to 80 then it varies down and

having smallest SLR 4.14.

VIII. CONCLUSION

Proposed algorithm using a novel encoding scheme, an

effective initial population generation strategy and

computationally efficient genetic search operator. In

experimental study almost having linear result. As nodes

are increasing its makespan time decreases. Due to flexible

value with increases nodes processor utilization also

decreases. As makespan time decreases the schedule

length also decreases when nodes increases. As applying

genetic to find an optimal result minimize parameters at

sum instance near to goal. The current researches can

consider further elaboration by applying various

techniques such as improving computation time,

incorporating network topology and communication

traffic. Another avenue of further research is to extend the

applicability of proposed algorithm. While targeted to be

used in APN algorithm may be extended to handle BNP

and UNC scheduling as well. Some efficient algorithmic

techniques for scheduling messages to link need to sought

lest the time complexity of the algorithm. The proposed

algorithm has shown an encourage performance. Further

improvement may be possible if we can determine an

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3229

optimal set of control parameters including crossover rate,

mutation rate, population size, number of generation and

number of parallel processors used. However finding an

optimal parameters set for particular genetic algorithm is

up till now an open research problem.

REFERENCES

1. Yu-Kwong Kwok, “Benchmarking and Comparison of the Task

Graph Scheduling Algorithms”, Journal of Parallel and Distributed

Computing 59, pp.381-422, 1999.

2. L. D. Davis (Ed.), The Handbook of Genetic Algorithms, New

York, Van Nostrand Reinhold, 1991.

3. G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic

for Interconnection Constrained Heterogeneous Processor

Architectures”, IEEE Transactions on Parallel and Distributed

Systems, vol. 4, no. 2, Feb. 1993, pp. 75-87.

4. F. Gruau, G. R. Joubert, F. J. Peters, D. Trystram and D. J. Evans,

“The Mixed Parallel Genetic Algorithm”, Parallel Computing:

Trends And Applications (Proc. of the International Conference

ParCo’ 93), 1994, pp. 521-524.

5. Yu-Kwong Kwok and Ishfaq Ahmad, “A Parallel Genetic-Search-

Based Algorithm for Scheduling Arbitrary Task Graphs to

Multiprocessors”.

6. Nafiseh Sedaghat, Hamid Tabatabaee-Yazdi, Mohammad-R.

Akbarzadeh-T, “Pareto Front Based Realistic Soft Real-Time Task

Scheduling with Multi-objective Genetic Algorithm on Arbitrary

Heterogeneous Multiprocessor System”, Journal of Internet

Technology Volume 12 (2011) No.1

7. Jasbir Singh and Gurvinder Singh, “Improved Task Scheduling on

Parallel System using Genetic Algorithm”, International Journal of

Computer Applications (0975 – 8887) vol 39, no.17, Feb 2012.

8. Kamaljit Kaur, Amit Chhabra and Gurvinder Singh, “Heuristics

Based Genetic Algorithm for Scheduling Static Tasks in

Homogeneous Parallel System”, International Journal of Computer

Science and Security (IJCSS), Volume (4): Issue (2)

BIOGRAPHIES

Amanpreet Kaur received the B. Tech

degree in Computer Science and

Engineering from DAVIET Jalandhar in

2011 and M. Tech degree in Software

System from Guru Nanak Dev University

Amritsar in 2013 respectively.

Prabhjot Kaur received the B. Tech

degree in Computer Science and

Engineering from Guru Nanak Dev

Engineering College Ludhiana in 2011 and

M. Tech degree in Computer Science and

Engineering from Guru Nanak Dev

University Amritsar in 2013 respectively.

